

Perspectives of Wind Energy in the Danube Region

Ildikó Dobi Wantuch, PhD

Climate expert

OMSZ Climatology Division

Alapítva: 1870

SGS

Perspectives of Renewable Energy in the Danube Region, 26-27 March 2015, Pécs

GWEC statistics 2014

Global cummulative installed wind capacity

Annual installed capacity by region (2005-2013)

Annual market grows by 44%, passes 50 GW for the first time in 2014

www.met.hu

Germany

PR China

EWEA statistics 2014

Installed power capacity per year (MW) and renewable share (%)

Based on EWEA data

Potential in Danube Region

Wind speed at 80 m

Large potential: mountains, sea Small or moderate potential: valley, shadow IRENA

Wind energy potential of Hungary

4,5% of Hungary (windiest area, v_{100m} > 6 m/s) would be enough to cover the half of the energy demand of the country.

Source: M. Hunyar, K. Veszpremi, G.Szepszo, 2006

Nándor Csikós, Péter Szilassy: Optimalisation of the wind farm location planning with GIS based on Hungarian case study area (Csongrád county)

Béla Munkácsy, Ádám Harmat, Dániel Meleg: The limits of wind energy in Hungary – The geographical aspects

Conclusions of preliminary Conference

Perspectives of renewable Energy in Danube Region 26 September, 2014, Pécs

	Potential	Support	Problem
Romania	good	good	Grid integration
Croatia	good	at beginning	Grid integration
Hungary	poor	only for small turbines (<50 kW)	Grid integration

Based on EWEA data

SWOT in European Countries

"Wind power prediction is a critical component of grid and system control" (e.g. Denmark, Germany, Spain, UK...)

Inteligent integration of wind power into the existing electricity supply

Purposes: max revenue and system stability with min. penalty

Short term prediction of wind turbine power outputs **48 hours ahead (15 min, hourly)** is essential

Source: G.K.Venayagamoorthy, K. Rohring, I. Erlich, 2012

Károly Tar: Statistical estimation of next day's average wind speed and wind power

Wind forecast with numerical models

Modell	Grid (km)	Number of vertical layers
ALADIN	8	49
ALADIN –DADA	5	49
AROME	2.5	60

Improvements (2013): cross-validation, linear regression, Kalman Filter, etc. www.met.hu

Gap for R&D

Improve methods for balancing supply and demands on country/ regional level

Best practices

https://demanda.ree.es/demandaEng.html

Hungarian Meteorological Service

Thank you for your attention!

dobi.i@met.hu

Alapítva: 1870

