General overview of RES, focusing on the geothermal energy

Perspectives of Renewable Energy in the Danube Region International Conference

> Made by: Klára Szita Tóth Anna Vizkeleti

> > **University of Miskolc**

Q

IL ECONOMIC

Pécs, 2015. 03. 27.

Concerned topics

- Introduction of the renewable resources
- Trends in the world
- RES in Hungary
- Biomass in Hungary
- Geothermal energy and its environmental impacts
- Conclusions

Source: own compilation based on MTA 2010

Source: own compilation based on EurObserv'ER

Source: own compilation based on EurObserv'ER

RES in Hungary

Primary production of renewable energy by type in Hungary between 2002 and 2013

Source: own compilation based on Eurostat database

Comparison between the current utilization of the RES and the objectives for 2020 in Hungary

Source: own compilation based on EurObserv'ER

Source: own compilation based on Megújuló energiaforrások kézikönyve pp30

Geothermal energy in Hungary

1GWh=3,6*10¹²J Source: own compilation based on Livo 2014

- Comparison with other resources
 - o permanently available,
 - \circ independent from the weather conditions,
 - o using flexibility,
 - o reduce the dependence from import,
 - \circ geothermal energy is available in the extraction site, so it can be used in a decentralized way

 \circ the research, deployment and the maintenance create jobs and retain them.

TITUTE OF WORLD AND REGIONAL ECONOMICS

Source: http://www.geothermal-energy.org/

- Project place: Battonya
- The finish of the project: 2017. december 31.

Main elements of the reservoir

Fluid production rate	75 kg/s
Fluid temperature at wellhead	200 °C
Total effective heat exchange surface	10×106 m2
Rock volume	3×108 m3
Flow impedance	<0,1 MPa (kg/s)
Thermal drawdown	10%
Water loss	<10%
Capital interest rate	5%

Source: own compilation based on EGEC 2012

Heat pumps

High percentage of using heat pumps

Geothermal heat pump (include Total units in Total units in Cumulated Cumulated Hydrothermal heat pump) operation in 2012 in 2013 operation 2012 2013 (**kW**) (**kW**) **Brine/water** 312 375 5742 6876 **Direct expansion/Water and Direct** 3800 3800 expansion/air Water/Water and Water/air 13 18 6700 4200 **Total** 325 393 13742 17376

The total geothermal heat pump capacity in Hungary

Source: own compilation based on collected and data of EurObserv'ER

TITUTE OF WORLD AND REGIONAL ECONOMICS

Environmental impacts

- Depletion of resources
 - Reduce the pressure
 - Caused the land to sink (?)
- Polluting waterways and air
 - Arsenic pollution
 - Contain dissolved gases
 - Closed-loop water systems
 - Open-loop water systems
- The difficulties of LCA analysis

Conclusions

- Reduce the energy dependence from other countries
- Contribute the implementation of green economy
- It has also economic effects (e.g. create new jobs)
- Contribute to rich our 2020 goals
- Reduce the CO₂ emissions
- It is also hard to adapt the legistlation in this field
- The geothermal energy need further research because of the high risk

Thank you for your attention!

Contact infromation:

Klára Szita Tóth: <u>regszita@uni-miskolc.hu</u> Anna Vizkeleti: <u>vizkeletianna@gmail.com</u> LE OF MO DRLD / *LEGIONAL ECONOMICS*