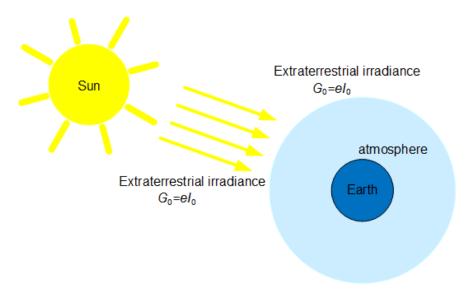
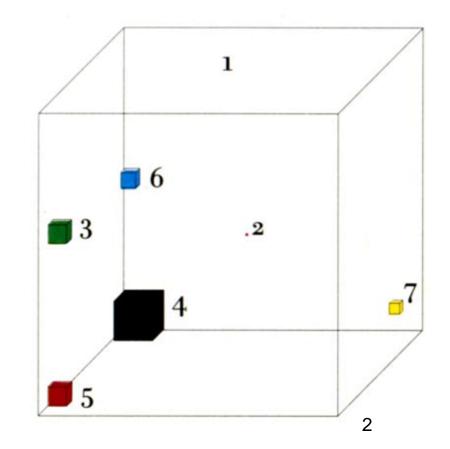


Solar Resources in the Danube region


Prof dr Damir Šljivac
Faculty of Electrical Engineering (ETFOS)
Josip Juraj Strossmayer University of Osijek, Croatia
www.etfos.unios.hr/reslab

Annual Energy from Sun Radiation vs. Energy Reserves and Needs

Extraterrestrial irradiance:


 G_0 =1321 W/m² - Earth farthest from the Sun G_0 =1412 W/m² - Earth is closest to the sun

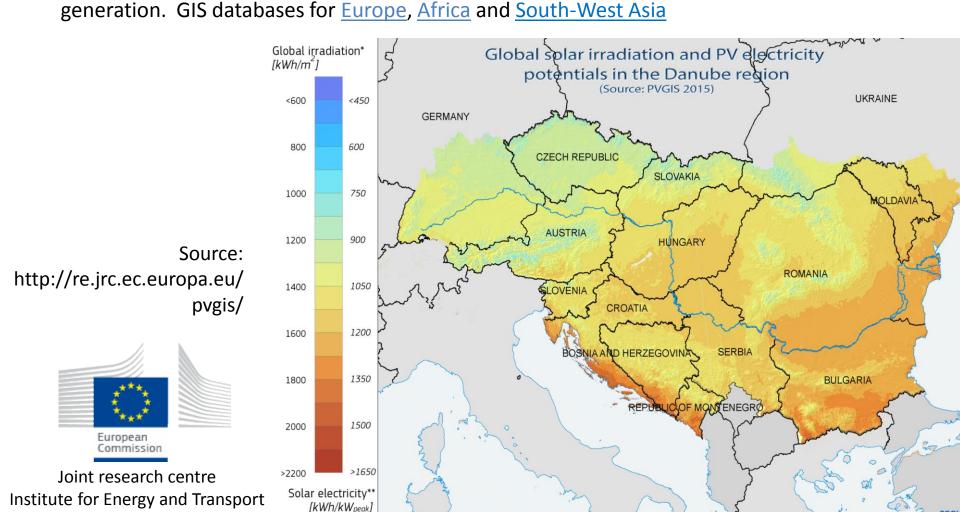
Solar constant I₀=1367 W/m²

Total Earth surface: 510.1x10⁶ sqkm resulting in average annual Sun radiation energy over 10⁹ (billion!!!) TWh/yr (Enormous!!!)

- (1) Annual Energy from Sun Radiation to Earth
 - (2) Direct Usage of Sun Energy
 - (3) Overall Natural Gas Reserves(4) Overall Coal Reserves(5) Overall Oil Reserves(6) Overall Uranium Reserves
 - (7) Annual World Energy Consumption

Definition of potential: REN21 methodology for RES

When focusing on the availability of renewable energy sources, it is important to define the type of potential that is considered. In the literature, various types of potentials are defined. There is no one single definition for the various types of potentials.

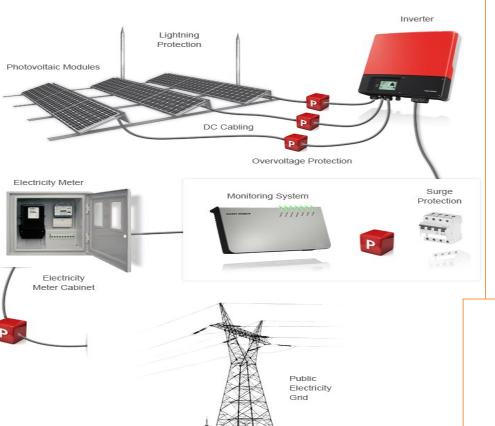

Definition of potential according to REN 21:

- Theoretical potential: The highest level of potential is the theoretical potential. This potential
 only takes into account restrictions with respect to natural and climatic parameters.
- **Geographical potential**: Most renewable energy sources have geographical restrictions, e.g. land use land cover that reduce the theoretical potential. The geographical potential is the theoretical potential limited by the resources at geographical locations that are suitable.
- **Technical potential**: The geographical potential is further reduced due to technical limitations as conversion efficiencies, resulting in the technical potential.
- Economic potential: The economic potential is the technical potential at cost levels considered competitive.
- Market potential: The market potential is the total amount of renewable energy that can be implemented in the market taking into account the demand for energy, the competing technologies, the costs and subsidies of renewable energy sources, and the barriers.

Source: ECOFYS: Global Potential of Renewable Energy Sources: A Literature Assessment" by order of REN21 - Renewable Energy Policy Network for the 21st Century, 2005

Definition of potential: PVGIS methodology for Solar energy

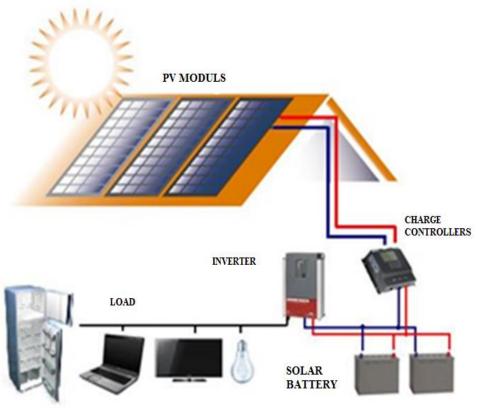
Photovoltaic Geographical Information System (PVGIS)
 Geographical Assessment of Solar Resource and Performance of Photovoltaic Technology
 Research, demonstration and policy-support instrument for geographical assessment of the solar energy resource in the context of integrated management of distributed energy generation. For technical, environmental and socio-economic factors of solar (electricity)

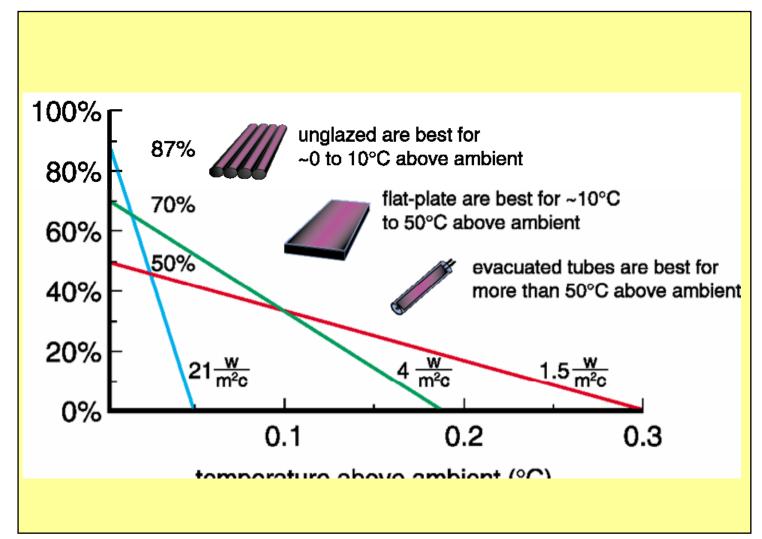


Choice of technology:

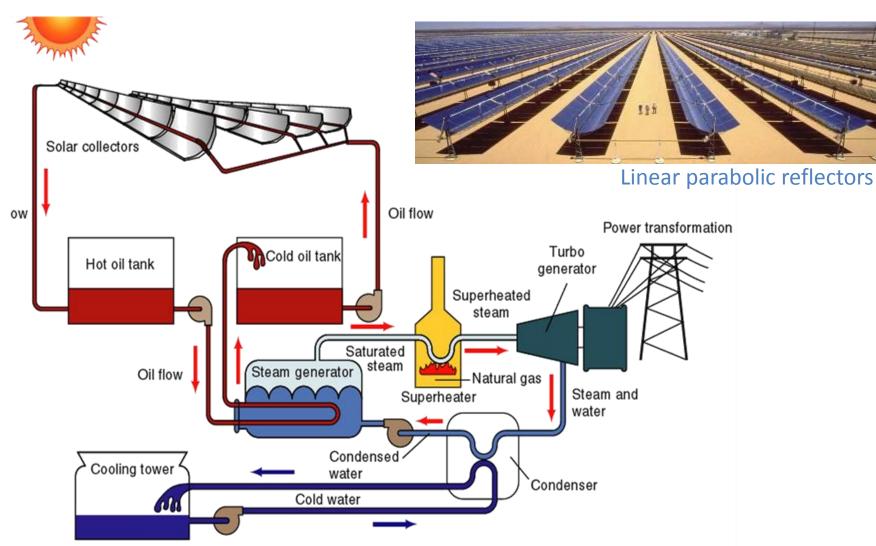
- PV Photovoltaic systems (electricity)
- CSP Concentrated solar thermal power plants (electricity and heat)
- SHC Solar collectors and heating and cooling systems (heat)

Source: REN21 Renewables 2014 Global Status Report


		START 2004 ¹	END 2012	END 2013
INVESTMENT				
New investment (annual) in renewable power and fuels ²	billion USD	39.5	249.5	214.4 (249.4)
POWER				
Renewable power capacity (total, not including hydro)	GW	85	480	560
Renewable power capacity (total, including hydro)	GW	800	1,440	1,560
➤ Hydropower capacity (total) ³	GW	715	960	1,000
☑ Bio-power capacity	GW	<36	83	88
☑ Bio-power generation	TWh	227	350	405
℧ Geothermal power capacity	GW	8.9	11.5	12
Solar PV capacity (total)	GW	2.6	100	139
Concentrating solar thermal power (total)	GW	0.4	2.5	3.4
↓ Wind power capacity (total)	GW	48	283	318
HEAT				
Solar hot water capacity (total) ⁴	GW_th	98	282	326
TRANSPORT				
Ethanol production (annual)	billion litres	28.5	82.6	87.2
Biodiesel production (annual)	billion litres	2.4	23.6	26.3
POLICIES				
Countries with policy targets	#	48	138	144
Feed-in Number of states / provinces / countries	#	34	97	98
RPS / quota policies Number of states / provinces / countries	#	11	79	79
Tendering Number of states / provinces / countries	#	8	45	55
Heat obligations / mandates Number of countries	#	n/a	19	19
Biofuel obligations / mandates ⁵ Number of countries	#	10	52	63


On-grid PV system in principal

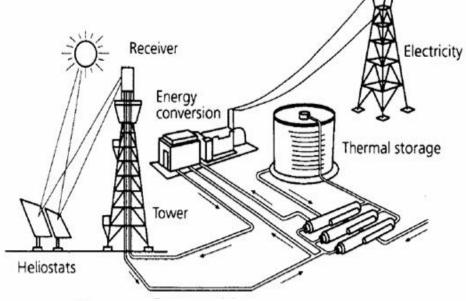
Off-grid PV system in principal



Solar collector efficiency and temperature

Parabolic through concentrated solar thermal power plant (CSP)

Solar tower CSP (with central receiver)



Dish Stirling CSP

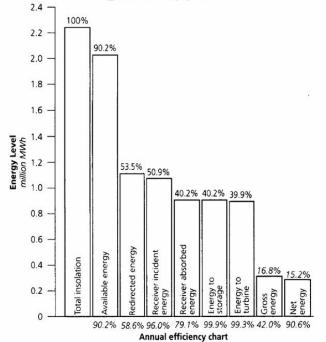


FIGURE 23: Annual efficiency of a $100\,\mathrm{MW_e}$ central receiver The efficiencies at the bottoms of the bars are component efficiencies; those a the top are cumulative efficiencies.

Technical, Economic and Market Potential

Constraints

- Limited area (topography, geology), ecological, cultural, political constraints
- Electricity market price vs. feed-in (incentive) policy vs. investments drops

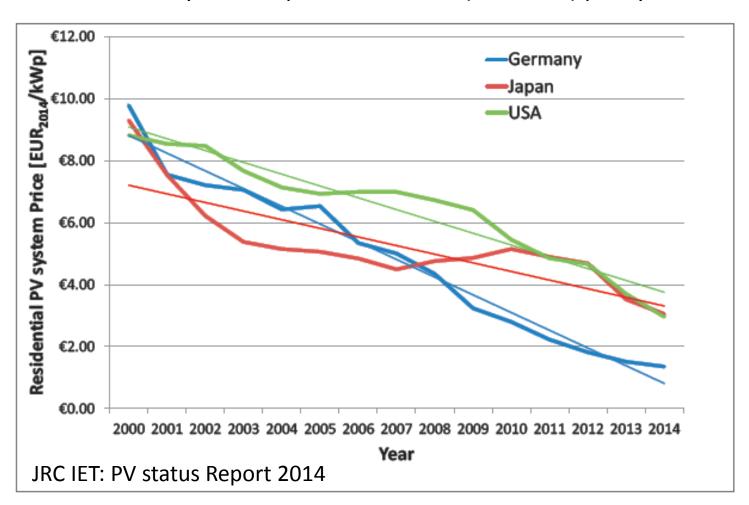
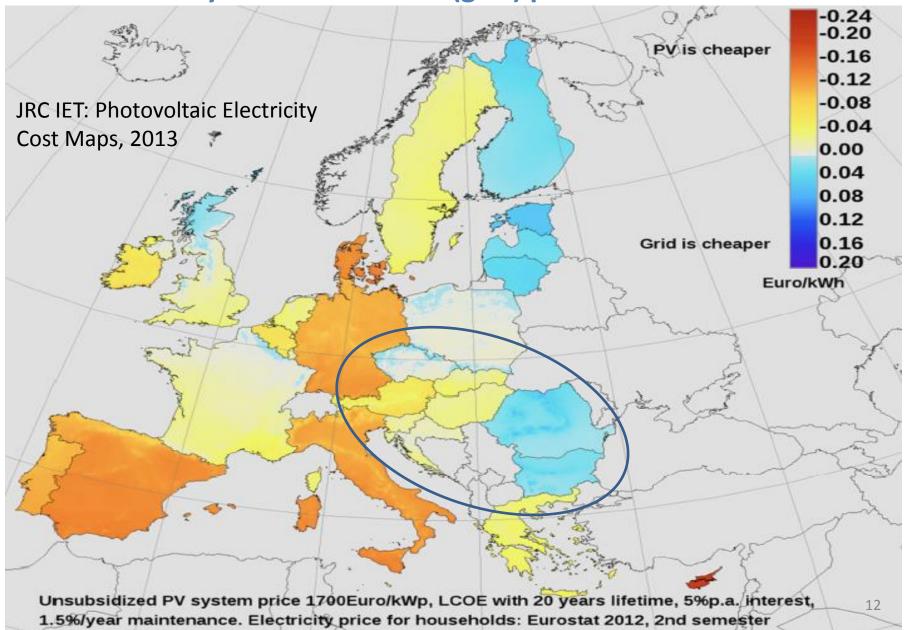


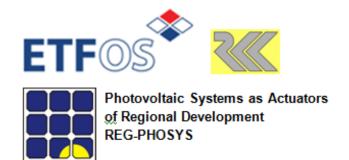
Fig. 9: Residential PV system price development over the last decade (data sources: IEA PVPS, BSW, DoE SunShot Initiative, Eurostat, OECD key economic data)

Technical potentials

Economics of RES: small-scale PV LCOE vs. Sun radiation

Table 1: LCOE of PV-generated electricity for residential systems with a system price of EUR 1400/kWp (excluding VAT, because the differences in the various countries are too large), 1.5%08M cost, an annual generation of $\frac{1000 \text{ kWh/kWp/year}}{1000 \text{ kWh/kWp/year}}$ and financial lifetimes of 20 years


	Price [EUR/kWp]	LCOE Product [EURct/kWh]	LCOE Capital [EURct/kWh]		LCOE O&M 2 % [EURct/kWh]	LCOE Total [EURct/kWh]			
Return on investment		0 %	3 %	5 %	10 %		3 %	5 %	10 %
PV module	560	2.80	0.85	1.48	3.18	1.12	4.77	5.40	7.10
Inverter	140	0.70	0.21	0.37	0.79	0.28	1.19	1.35	1.77
Balance of systems	270	1.35	0.41	0.71	1.53	0.54	2.30	2.60	3.42
Engineering, procurement & construction	300	1.50	0.46	0.79	1.70	0.60	2.56	2.89	3.80
Other (fees, permits, insurances)	130	0.65	0.20	0.34	0.74	0.26	1.11	1.25	1.65
Total	1400	7.00	2.14	3.70	7.95	2.80	11.94	13.50	17.70


Table 2: LCOE of PV-generated electricity for residential systems with a system price of EUR 1400/kWp (excluding VAT, because the differences in the various countries are too large), 2 % 0&M costs, an annual generation of 1300 kWh/kWp/year and a financial lifetime of 20 years

	Price [EUR/kWp]	LCOE Product [EURct/kWh]	LCOE Capital [EURct/kWh]		LCOE O&M 2 % [EURct/kWh]	LCOE Total [EURct/kWh]			
Return on investment		0 %	3 %	5 %	10 %		3 %	5 %	10 %
PV module	560	2.15	0.66	1.14	2.45	0.86	3.67	4.15	5.46
Inverter	140	0.54	0.16	0.28	0.61	0.22	0.92	1.04	1.37
Balance of systems	270	1.04	0.32	0.55	1.18	0.41	1.77	2.00	2.63
Engineering, procurement & construction	300	1.15	0.36	0.61	1.31	0.47	1.97	2.23	2.93
Other (fees, permits, insurances)	130	0.50	0.15	0.26	0.57	0.20	0.85	0.96	1.27
Total	1400	5.38	1.65	2.85	6.12	2.16	9.18	10.38	13.65

Technical potentials

Electricity household retail (grid) price vs. PV LCOE 2012

Ecological characteristics: waste disposal vs EBTP & CO_{2eq}

Module ecological characteristics	Mono Si Bisol BMO250	CIS Solar Frontier SF-150	Amorph Si Masdar MPV-100S	High-eff mono Si Panasonic VBHN240SE10	Poly Si Bisol BMU250
Waste disposal (direct environmental impact)	High efficiency = less waste materials	Medium efficiency= more waste materials	Smallest eff, shorter lifetime = the most waste, but low cell production temp results in smaller material use	Even higher efficiency = even less watste materials	Simillar efficiency as with mono Si
Energy consumption and CO ₂ equivalent	High energy consumption = longer EBTP and CO ₂ equival	Short EBPT and low CO ₂ equivalent	Low cell production temp = smaller energy consumption	Short EBTP and high CO ₂ equivalent	Shorter EBTP than mono Si, lower CO ₂ eq, do not contain toxsic matter

Legend:

Bad Medium Good The best

Solar Resources in the Danube region

Prof dr Damir Šljivac
Faculty of Electrical Engineering (ETFOS)
Josip Juraj Strossmayer University of Osijek, Croatia
www.etfos.unios.hr/reslab