Perspectives of Renewable Energy in the Danube Region

INTERNATIONAL CONFERENCE 26-27 March 2015, PÉCS

The Limits to Wind Energy in Hungary the Geographical Aspect

dr. Béla Munkácsy – Ádám Harmat – Dániel Meleg ELTE University, Dept. of Environmental and Landscape Geography Budapest, Hungary

HOIVER SHE DE ROIVER OF THE RO

Environmental Education Network, Hungary

Growing importance of Geography in Energy Planning

- Scientific necessity in energy production
 - Huge \rightarrow Small ecological footprint
 - Finite (nuclear, fossil) → Renewable energy sources
 - Import \rightarrow local sources
 - Centralised \rightarrow local energy systems
- More than 10 years research and teaching experiences in the ELTE University, Dept. Of Environmental and Landscape Geography
 - GIS-based energy potential calculations since 2003
 - "This Way Ahead" energy planning research since 2009

The main elements of our energy scenario research

- Calculating renewable energy potentials
 with GIS
- Estimating efficiency potentials
 (the technological factor)
- Estimating energy saving (sufficiency) potential
 (the human factor)

Creating a BEST CASE SCENARIO

- computer based analysis (software developed by INFORSE-Europe)
- in 5-years steps by 2050
 - demand
 - development of efficiency;
 - market penetration of renewables.

Methodology of calculting technical wind energy potential

present technological level

- 2-3 MW/turbine
 - rotor diameter: 100-120 m
- land requirement value:
 - 8-10 MW/km² optimal lay-out of turbines
- legal limitations (excluded areas, examples)
 - a) protected areas (landscape, nature);
 - b) infrastructure, settlement, industrial areas, farms;
 - c) areas with high agricultural value;

d) forests;

- e) hydrographical elements;
- f) unsuitable areas from technological point of view
- buffer zones
- too small areas

Edited by Tóta, A.

Protected natural areas

Results (technical pot.): 5.13% for Hungary 47 700 MW \rightarrow 96 TWh

If we could use **all** the legal and technical possibilities...

International comparison

Adjustment of results

GIS-based methodology used by the German Federal Environment Agency (Lütkehus, I. – Salecker, H. [2014])

Results: 13.5% suitable area for wind applications

	Area potential		Capacity potential	Output potential	Mean full load hours
	[km²]	Share	[GW]	(TWh)	[h/a]
North Berlin, Brandenburg, Bremen, Hamburg, Mecklenburg- Western Pomerania, Lower Saxony, Saxony-Anhalt, Schleswig- Holstein (= 38.9 % of German territory)	22,851	16.4 %	526	1,378	2,621
Central Hesse, North Rhine-Westphalia, Rhineland-Palatinate, Saxony, Thuringia (= 30.7 % of German territory)	11,200	10.2 %	287	728	2,540
South Baden-Württemberg, Bavaria, Saarland (= 30.4 % of German territory)	15,310	14.1 %	375	791	2,108
Germany overall	49,361	13.8 %	1,188	2,898	2,440

Methodology used in Saxony-Anhalt, Germany for estimating the technical wind energy potential (Neddermann, B. et al. [2014])

Suitable areas for wind energy

Turbine capacity: 3,5 MW

Land requirement value: ~25 MW/km²

Methodology of calculating socio-economic potential

East Germany as a realistic model

- Leading in wind energy
 - 14 048 MW (1990 \rightarrow 2014)
- Similar features in
 - common socialistic history
 - territory size and terrain
 - population density
 - power consumption
 - (wind climate)

- 1. calculation of the "per capita" socio-economic potential
- 2. calculation of the "per km²" socio-economic potential
- 3. setting of the average value
- 4. correction with GDP/capita

Results of the socio-economic potential				
installed capacity per capita in East Germany	population of Hungary	"per capita" socio- economic potential of Hungary		
o,861 kW/capita	9 908 798 inhabitants	8 531 MW		
installed capacity per km² in East Germany	territory of Hungary	"per km²" socio- economic potential of Hungary		
129 kW/km ²	93 030 km²	12 041 MW		

Final socio-economic potential: 10 286 MW \pm 15% \rightarrow 20,7 TWh \pm 15%

Lower GDP/capita by 2050 longer implementation time, achievable by 2050

What does it mean?

	East Germany 2014	Hungary 2015	Renewable Energy Utilization Action Plan 2020	Hungary "This Way Ahead" 2050
Wind turbine installed capacity	14 048 MW	329 MW	750 MW	10 286 MW

The East German example proves that it is a real option to create such a big wind turbine capacity.

Sustainable utilisation of renewable energy sources

	technical potencial (PJ/year)	socio-economical potencial (PJ/year)	
Solar	268 (157 power + 111 heat) (33500 MW hybrid collector)	37-56 (28-47 power + 9 heat) (in comp. with Bavaria and Austria)	
Wind	<mark>350-450</mark> (50000-60000 MW)	90-100 (12000-13000 MW) - in comp. with Eastern- Germany	
Biofuel (EU Directive)	12		
Sustainable biomass production	100	90 (in comparison with data from MeckPomm and Sweden)	
Energy crops	<mark>65</mark> (5000 km2)		
Biogas	80		
Ambient heat	100 ??	85 (in comp. with Sweden)	
Hydro	2	2	
S	~980-1080	~300-320	

Primary energy supply (2000-2050) "This Way Ahead – **Vision Hungary 2050**" scenario

Energy Management and the Human Factor 2008 The first 100% renewable energy scenario for Hungary

Erre van előre 1.0 **Vision Hungary 2050** This Way Ahead 1.0 2011 A fenntartható energiagazdálkodás felé vezető út Erre van előre! - Vision 2040 Hungary 2.0

Erre van előre 2.0 This Way Ahead 2.0 2014

Acknowledgement

The authors would like to thank the following students for their contribution to the research:

- Sarolta Borzsák
- Nikolett Dudás
- Ilona Kása
- Zsuzsanna Kneip
- Gábor Kovács
- Ferenc Szabó
- Árpád Székely
- Attila Tóta
- Péter T. Tóth

