Effect of solar radiation on underground temperature values and heat supply around a ground coupled heat pump based on meteorological data, Debrecen

Tamás Buday ¹, István Lázár ², Gergely Csákberényi-Nagy ², Erika Bódi ¹ and Tamás Tóth ²

¹ Department of Mineralogy and Geology, University of Debrecen
² Department of Meteorology, University of Debrecen
³ Renewable Energy Park, Debrecen

Introduction

• Heat pump system is the main utilization type in geothermal energy with dynamic growing.

Introduction

- Heat pump system is the main utilization type in geothermal energy with dynamic growing.
- These systems usually need summer recovery for optimal running and to avoid overcooling.

Introduction

- Heat pump system is the main utilization type in geothermal energy with dynamic growing.
- These systems usually need summer recovery for optimal running and to avoid overcooling.
- How significant is the role of solar irradiation in the summer recovery?

Main types of ground loops

affected by solar radiation

Source of data

22:00

27. Mar

02:00

04:00

06:00

10

5

10:00

12:00

14:00

16:00

18:00

20:00

- -20 cm - -5 cm - -10 cm - -2 cm - -1 m - -1.5 m - -2 m - -30 cm - -0.5 m

08:00

Theoretical temperature models

• In our approximation the solar irradiance have effect on the temperature of the upper soil layers, which can modify the temperature of the underground and also the air temperature.

• sum of sinusoidal functions

 $T(z,t) = T_0(z=0) + Gz + A_y e^{-z\sqrt{\omega_y/2\alpha}} \cos(\omega_y t + \phi_y - z\sqrt{\omega_y/2\alpha}) + A_d e^{-z\sqrt{\omega_d/2\alpha}} \cos(\omega_d t + \phi_d - z\sqrt{\omega_d/2\alpha})$ $\alpha(A) = \frac{(z_2 - z_1)^2 \omega_y}{2[\ln A(z_1) - \ln A(z_2)]^2}$

$$\alpha(\phi) = \frac{(z_2 - z_1)^2 \omega_y}{2(\phi_2 - \phi_1)^2}$$

Results – daily temperatures

Results – daily temperatures

Results – yearly temperatures

 $T(z,t) = T_0(z) + A_y(z) \cdot \cos(\omega_y t + \phi_y(z))$

Results – yearly temperatures

depth range (m)	$\alpha(A_y)$ (m ² /s)	$\alpha(\phi) \ (m^2/s)$
$0.10 - 0.20^*$	7.8·10 ⁻⁷	9.9·10 ⁻⁷
0.20-2.00**	3.2.10-7	5.7·10 ⁻⁷

Conclusions

- thermal effect of irradiation can be detected only in shallow geothermal systems, the horizontal and upward energy flow is more important in the recovery
- installation depth of these systems is small, the undisturbed temperature of it is the lowest at the end of the heating season
- artificial temperature drop is intensified by natural processes
- environmental effects of overcooling:
 - soil freezing deeper
 - SPF value decreasing
 - the operation costs increasing.

The effect of irradiation is not enough to supply the extracted energy, thus thermal energy storage is recommended.

Conclusions

Analysing the climate of the Danube Region the natural supply by irradiation is more effective in areas with the following characters:

- high irradiation values in both seasons and mild winter (SOUTH);
- high probability of long spells of snow cover during cold winter and also of hot summer (EAST);
- higher cooling demand than heat demand with good possibilities of thermal energy storage (SOUTH).

Other possible "strategy" for more efficient recovery:

• installing the shallow heat exchangers below buildings

RENEWABLE ENERGY PARK 187, Kishegyesi út, H4031 Debrecen

www.megujuloenergiapark.hu

Thank you for you attention!